Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            In many prediction problems, spurious correlations are induced by a changing relationship between the label and a nuisance variable that is also correlated with the covariates. For example, in classifying animals in natural images, the background, which is a nuisance, can predict the type of animal. This nuisance-label relationship does not always hold, and the performance of a model trained under one such relationship may be poor on data with a different nuisance-label relationship. To build predictive models that perform well regardless of the nuisance-label relationship, we develop Nuisance-Randomized Distillation (NURD). We introduce the nuisance-randomized distribution, a distribution where the nuisance and the label are independent. Under this distribution, we define the set of representations such that conditioning on any member, the nuisance and the label remain independent. We prove that the representations in this set always perform better than chance, while representations outside of this set may not. NURD finds a representation from this set that is most informative of the label under the nuisance-randomized distribution, and we prove that this representation achieves the highest performance regardless of the nuisance-label relationship. We evaluate NURD on several tasks including chest X-ray classification where, using non-lung patches as the nuisance, NURD produces models that predict pneumonia under strong spurious correlations.more » « less
- 
            Deep models trained through maximum likelihood have achieved state-of-the-art results for survival analysis. Despite this training scheme, practitioners evaluate models under other criteria, such as binary classification losses at a chosen set of time horizons, e.g. Brier score (BS) and Bernoulli log likelihood (BLL). Models trained with maximum likelihood may have poor BS or BLL since maximum likelihood does not directly optimize these criteria. Directly optimizing criteria like BS requires inverse-weighting by the censoring distribution. However, estimating the censoring model under these metrics requires inverse-weighting by the failure distribution. The objective for each model requires the other, but neither are known. To resolve this dilemma, we introduce Inverse-Weighted Survival Games. In these games, objectives for each model are built from re-weighted estimates featuring the other model, where the latter is held fixed during training. When the loss is proper, we show that the games always have the true failure and censoring distributions as a stationary point. This means models in the game do not leave the correct distributions once reached. We construct one case where this stationary point is unique. We show that these games optimize BS on simulations and then apply these principles on real world cancer and critically-ill patient data. Supplementary Material: pdfmore » « less
- 
            Observational data is increasingly used as a means for making individual-level causal predictions and intervention recommendations. The foremost challenge of causal inference from observational data is hidden confounding, whose presence cannot be tested in data and can invalidate any causal conclusion. Experimental data does not suffer from confounding but is usually limited in both scope and scale. We introduce a novel method of using limited experimental data to correct the hidden confounding in causal effect models trained on larger observational data, even if the observational data does not fully overlap with the experimental data. Our method makes strictly weaker assumptions than existing approaches, and we prove conditions under which it yields a consistent estimator. We demonstrate our method's efficacy using real-world data from a large educational experiment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available